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Art Statement

® The style of music and body movements should be consistent, conveying similar mood and tone,
e Each synchronized dance and music segment should present the same rhythmic pattern, while rhythmic patterns in dance phrases
appear with great regularity,

* The organization of a dance should be coordinated with the structure of the corresponding music, e.g., repeated musical phrases
(verse and chorus) are typically associated with re-peated movements, while identical meters in a phrase often correspond to

symmetrical movements.

ChoreoMaster: Choreography-Oriented Music-Driven Dance Synthesis
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ZHIPENG TAN, NetEase Games Al LAB, China

JIN LEI, NetEase Games Al LAB, China

SONG-HAI ZHANG’, Tsinghua University, China
YUAN-CHEN GUQ, Tsinghua University, China
WEIDONG ZHANG, NetEase Games Al LAB, China
SHI-MIN HU, Tsinghua University, China

ST S SRS L R R e e e e




Art Statement

Choreography-Oriented Choreomusical Embedding i Choreography-Oriented Dance Synthesis
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Method

Style embedding vectors
of music segment ZM [ Feature vectors extracted

Choreographic-Oriented Choreomusical Style Embedding
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Method

e MFCC (Mel-Frequency Cepstral Coefficients)

Step1: Pre-emphasis

s2(n) = s(n) - a*s(n-1)
a: 0~1

Step2: Signal Framing
N: 256 or 512 (set of sample)

Step3: Hamming Windowing
W(n, a) = (1 - a) - a cos(2pn/(N-1)),

M: N/3 (set of overlap sample) 0<n=N-1
Pre-emphasis Signal Framing Hamming Windowing
NAQ

3
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Fast Fourier Trans.

Frequency

Step6: Discrete Cosine Trans.

C,=Z,-Ncos[m*(k-0.5)*n/N]*E,,
m=1,2, ..., L

Step5: Triangular Bandpass Filters
mel(f)=2595*log10(1+f/700)

Step4: Fast Fourier Transform
Fx) = S f (m)e 270

f(n) = 073 F (x)e "W



Method

e Loss Function

Step-1
Choreographic-Oriented Choreomusical Style Embedding
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Method

e Loss Function

Ldec = -E,.[lng(z) —Inp(z)] = —E,, [ln gl(%]
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Method

e GridSearch — Hyperparameters turning

Ln = A1 Lim+ A2L dec

Lg =MLg+ L4

A1 1.0 (09 |08 |07 (06 (05 (04 (03 |02 |01

A2 00 |01 |02 |03 |04 (05 |06 [07 |08 |09
Motion Accuracy 1 (%) | 725 | 724 | 724 | 724 | 723 | 7T1.7 | 70.0 | 68.0 | 65.1 | 60.9
Accuracy 2 (%) | 67.5 | 67.4 | 674 | 674 | 673 | 669 | 64.5 | 62.9 | 59.3 | 53.0
Music Accuracy 1 (%) | 95.2 | 95.2 | 95.1 | 95.1 | 94.8 | 94.0 | 91.2 | 86.6 | 82.1 | 78.9
“ Accuracy 2 (%) | 784 | 78.3 | 783 | 78.3 | 782 | 77.5 | 74.0 | 70.3 | 68.2 | 64.1




Method

e Loss Function

Step-2
Chnrengraphic-()rienled Choreomusical Style Embedding
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-!:stjfle = A3Lg+ Aq4lm + AsL;

where Lm and Ld are the classification losses, Lz is
the MSE loss between ZM and ZD ,and 13, ..., A5
are weights. Through these two phases of training,
we can map any music and dance segments into a
unified choreomusical embedding space, where
style consistency between music and dance can be
measured by the Euclidean distance between the
corresponding embedding vectors.



Method

e GridSearch — Hyperparameters turning

-Est}fle = A3Lg+ AgLym +AsL;

"!"31 }.4 = 0.5 /“\5 1 2 3 4 3! 6 7 8 9
Motion Accuracy 1 (%) 70.8 | 70.6 | 70.7 | 70.6 | 705 | 70.2 | 69.6 | 69.4 | 69.1
Accuracy 2 (%) 66.1 | 65.9 | 65.8 | 65.8 | 65.7 | 65.5 [ 64.9 | 64.2 | 64.3
Music Accuracy 1 (%) 91.0 | 90.9 | 90.9 | 90.8 | 90.8 | 90.7 | 90.7 | 90.3 | 90.1
Accuracy 2 (%) 772772 | 771|772 | 771 | 77.1 | 77.0 | 69.9 | 69.9
Choreomusical Embedding Distance | 0.51 | 0.43 | 0.36 | 0.32 | 0.32 | 0.31 | 0.31 | 0.31 | 0.31
As = 5 A3 0.9 0.8 0.7 (06 |05 |04 0.3 | 0.2 0.1
‘ A4 0.1 0.2 03 (04 |05 | 0.6 0.7 | 0.8 0.9
Motion Accuracy 1 (%) 706 | 70.6 | 706 | 705 | 70.5 | 70.5 | 70.3 | 70.3 | 70.0
Accuracy 2 (%) 65.8 | 65.8 | 65.7 | 65.7 | 65.7 | 65.7 | 65.5 | 65.5 | 64.3
Music Accuracy 1 (%) 89.9 | 89.1 | 90.3 | 90.6 | 90.8 | 90.8 | 90.9 | 90.9 | 90.9
“ Accuracy 2 (%) 76.4 | 770 [ 771 | 77.1 | 77.1 | 77.2 | 772 | 772 | 77.2
Choreomusical Embedding Distance | 0.33 | 0.33 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.33




Art Statement

* Rhythm Embedding
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Art Statement

e Feature Extraction

This study feed the network with certain extracted
features. Specifically, the spectral onset strength
curve [Bock and Widmer 2013] and RMS energy
curve for music (dimension: [2, 200]); the motion
kinematic curve, two hand trajectory curvature
curves and two foot contact curves for dance
(dimension: [5, 60]).

The motion kinematic curve is computed using the
weighted angular velocity function proposed by
Shiratori et al. [2006].

The hand trajectory curvature curve records the

curvatures of the trajectories of the two wrist joints.

The foot contact curve records contact information
between both feet and the floor.
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Art Statement

e Loss Function

redding . Choreographic-Oriented Choreomusical Rhythm Embedding
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-Erh}rtlml = AgLay + A7Lmr

where Ldr and Lmr are the classification loss for dance
and music respectively, and A6 and A7 are weights. To
penalize large prediction errors, as well as conventional
cross-entropy loss, we add the weighted Hamming
distance between the predicted rhythm signature and
the ground truth rhythm signature when calculating Ldr
and Lmr.



Method

e GridSearch — Hyperparameters turning

‘El'h‘jf'thl'ﬂ = AgLar + A7Lmr

e 1.0 {09 [08 [07 (06 |05 |04 |03 [02 [01 [0.0
Ay 00 |01 [02 |03 [04 [05 |06 |07 |08 [09 [10
Motion | Xep-3 (%) [ 678 [70.1 [ 714 [ 719 [72.2 [73.2 [ 738 | 738 [ 73.3 [ 73.0 | -
Top-1 (%) | 40.9 | 423 | 437 | 448 | 45.3 | 46.0 | 47.1 | 47.1 | 471 | 46.7 | -
Music  |Lop-3 (%) | - S12 | 812 | 818 | 82.1 | 824 | 823 | 81.3 | 806 | 799 | 76.7
Top-1 (%) | - 58.1 | 58.2 | 58.8 | 59.1 | 59.1 | 50.1 | 58.9 | 57.7 | 56.1 | 54.3




Method

e Motion Graph Construction
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Fig. 5. Without considering style compatibility, improper edges may appear, resulting in a lovely motion
switching to a sexy or cool motion as illustrated in the figure.
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Fig. 6. Dance motions in our database are augmented with
mirroring, blending and reshuffling.
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Method

The learned style embedding vector and labeled rhythm
signature are also attached to each graph node.

* Choreography-Oriented Choreomusical Embedding
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Result

Quantitative Evaluation. They adopt several evaluation metrics to quantitatively compare these methods, as shown in
Table 3. These metrics are:

1. FID score. Fréchet inception distance (FID) [Heusel et al. 2017] was used to measure how close the distribution of
generated dances is to that of the real ones.

2. Beat accuracy. This measures how accurately the motion beats are aligned to the music beats, represented by the
ratio of aligned beats to all music beats.

3. Diversity. They follow [Lee et al. 2019] to evaluate the average feature distance between generated dances for
different music inputs.

Method FID Beat Accuracy Diversity
Real Dance 2.7 92.6% 83.5
Lee et al. [2013] 245 38.4% 75.1
Yan et al. [2019] 946 8.2% 56.2
Sun et al. [2020] 87.4 12.7% 64.1
Ours (w/o EC) 205 85.2% 72.4
Ours (w/o RC) 17.9 58.3% 76.5
Ours (w/o SC) 18.5 83.8% 78.3

Ours 16.8 88.4% 77.9




Result
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Fig. 9. User study results for ordinary users (above) and for choreographers and artists (below). Our method
achieves higher scores than Lee et al. [2013], Lee et al.[2019], Yan et al. [2019] and Sun et al. [2020].




Result

Before Joint Training After Joint Tnunlng w/o DEC . = | w/ DEC
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Fig. 10. T-SNE visualization of the choreomusical Fig. 11. T-SNE visualization of music distributions in
style embedding of musics and dances from the the feature space of the classification network
test set. Left, right: results before and after joint trained without DEC loss (left) and with DEC loss

training. The embedding of music-dance pairs (right).
becomes much closer after joint training






Connection

« This study introduce three rules from choreography theory, which greatly facilitate music-
driven dance motion synthesis;

 They develop a cross-domain embedding framework, incorporating the introduced rules, to
correctly and effectively characterize complex choreomusical relationships from limited
available high-quality music/motion data, which successfully casts qualitative choreographic
knowledge into computable metrics;

« This study present the first production-ready dance motion synthesis system, which can

robustly generate high-quality dance motions in a highly controllable way;
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